
Charm: A Language for Closed-form High-level
Architecture Modeling

Weilong Cui∗, Yongshan Ding†, Deeksha Dangwal∗, Adam Holmes†, Joseph McMahan∗,
Ali Javadi-Abhari‡, Georgios Tzimpragos∗, Frederic T. Chong† and Timothy Sherwood∗

∗University of California, Santa Barbara

{cuiwl, deeksha, jmcmahan, gtzimpragos, sherwood}@cs.ucsb.edu
†University of Chicago

{yongshan, adholmes}@uchicago.edu, chong@cs.uchicago.edu
‡IBM Research

ali.javadi@ibm.com

Abstract—As computer architecture continues to expand be-
yond software-agnostic microarchitecture to data center organi-
zation, reconfigurable logic, heterogeneous systems, application-
specific logic, and even radically different technologies such
as quantum computing, detailed cycle-level simulation is no
longer presupposed. Exploring designs under such complex
interacting relationships (e.g., performance, energy, thermal, cost,
voltage, frequency, cooling energy, leakage, etc.) calls for a
more integrative but higher-level approach. We propose Charm,
a domain specific language supporting Closed-form High-level
ARchitecture Modeling. Charm enables mathematical represen-
tations of mutually dependent architectural relationships to be
specified, composed, checked, evaluated and reused. The language
is interpreted through a combination of symbolic evaluation (e.g.,
restructuring) and compiler techniques (e.g., memoization and
invariant hoisting), generating executable evaluation functions
and optimized analysis procedures. Further supporting reuse,
a type system constrains architectural quantities and ensures
models operate only in a validated domain. Through two case
studies, we demonstrate that Charm allows one to define high-
level architecture models concisely, maximize reusability, capture
unreasonable assumptions and inputs, and significantly speedup
design space exploration.

Keywords-abstraction; modeling; DSL;

I. Introduction

Computer architecture is evolving into a field asked to cover

a tremendous space of designs. From the smallest embedded

system to the largest warehouse-scale computing infrastruc-

ture, from the most well-characterized CMOS technology node

to novel devices at the edge of our understanding, computer ar-

chitects are expected to be able to speak to the non-orthogonal

concerns of energy, cost, leakage, cooling, complexity, area,

power, yield, and of course performance of a set of designs.

Even radical approaches such as DNA-based computing [1]

and quantum architectures [2], [3] are to be considered. While

there are a great deal of well considered infrastructures to build

around when detailed cycle-level simulation is required, for

engineering questions that span multiple interacting constraints

or to extreme scales the best approaches are more ad-hoc.

Careful application of detailed simulation can accurately

estimate the potential of a specific microarchitecture, but

exploration across higher level questions always involves some

analytic models. For example, “given some target cooling

budget, how much more performance can I get out of an

ASIC versus an FGPA for this application given my ASIC

will be 2 tech nodes behind the FPGA?” The explosion of

domain-targeted computing solutions means that more and

more people are being asked to answer these questions ac-

curately and with some understanding of the confidence in

those answers. While any Ph.D. in Computer Architecture

should be able to answer this question, when you break it

down, it requires a combination of a surprisingly complex set

of assumptions. How do tech node and performance relate?

What is the relationship between energy use and performance?

ASIC and FPGA performance? Dynamic and leakage power?

Temperature and leakage? Any result computed from these

relationships will rely on the specific relationships chosen, on

those relationships being accurate in the range of evaluation,

on a sufficient number of assumptions being made to produce

an answer (either implicitly or explicitly), and finally on that

the end result be executable to the degree necessary to explore

a set of options (such as for a varying parameter e.g., total

cooling budget).

Such analysis today is not supported in any structured form.

Typically it exists as a set of equations in an Excel spreadsheet

or perhaps as a set of handwritten functions in a scripting

language. Unfortunately, this comes with some issues. As sim-

ple as sets of mathematical relationships between quantities,

the lack of a common engineering basis for these models

have kept them from being swiftly and correctly constructed,

understood and applied in guiding new system designs. Some

models share a set of common relationships but they redefine

those symbols and equations often with subtle differences that

can be misleading if one is not careful. Some have implicit

constraints on one or more architectural quantities which may

lead to pitfalls if overlooked. Finally, one has to manually

convert these mathematical equations to executable functions

in order to evaluate the model and perform the design space

exploration, which can be error-prone and inefficient.

To address these issues we design and explore a declarative

domain specific language, Charm, to serve as a unified basis

for the representation, execution, and optimization of closed-

152

2018 ACM/IEEE 45th Annual International Symposium on Computer Architecture

2575-713X/18/$31.00 ©2018 IEEE
DOI 10.1109/ISCA.2018.00023

form high-level architecture models. Charm provides a concise

and natural abstraction to express architectural relationships

and declare analysis goals. By combining symbolic manip-

ulation, constraint solving, and compiler techniques, Charm

bridges the gap between mathematical equations and exe-

cutable, optimized evaluation functions and analysis proce-

dures. The benefit of building and evaluating closed-form high-

level architecture models using Charm is threefold:

Abstraction – Charm encapsulates a set of mutually depen-

dent relationships and supports flexible function generation.

It enables representation of architecture models in a math-

ematically consistent way. Depending on which metric the

model is trying to evaluate, Charm can generate corresponding

functions without requiring the user to re-write the equations.

It also modulates high-level architecture models by packing

commonly used equations, constraints and assumptions in

modules. These architectural “rules of thumb” can then be eas-

ily composed, reused and extended in a variety of modelling

scenarios.

Type Checking – Charm enables new static and run-time

checking capabilities on high-level architecture models by

enforcing a type system in such models. One example is

that many architecturally meaningful variables have inherent

physical bounds that they must satisfy; otherwise, although

mathematically viable, the solution is not reasonable from

an architectural point of view. With the type system built-

in, Charm can dynamically check if all variables are within

defined bounds to ensure a meaningful modelling result. The

type system also helps prune the design space based on

constraints, without which a declarative analysis might end up

wasting a huge amount of computing effort in less meaningful

sub-spaces.

Optimization – Charm opens up new opportunities for

compiler-level optimization when evaluating architecture mod-

els. Although high-level architecture models are usually sev-

eral orders of magnitude faster than detailed simulations, as the

model gets complicated or is applied many times to estimate

a distribution, it can still take a non-trivial amount of time

to naively evaluate the set of equations every iteration. By

expressing these complicated models in Charm, we are able

to identify common intermediate results to hoist outside of

the main design option iteration and/or apply memoization on

functions.

Finally, and perhaps most importantly to the community, it

promotes collaboration between application designers, com-

puter architects, and hardware engineers because they can

share and refine models using the same formal specification

and a common set of abstractions.

We release Charm as an open-source tool on github1

and we provide a wide collection of established architecture

models for quick use/reference, including: the dark silicon

model [4], a resource overhead model for implementing magic

state distillation on surface code [5]–[7], mechanistic cpu

1https://github.com/UCSBarchlab/Charm.git

models [8], [9], a TCAM power model [10], the LogCA

model for accelerators [11], the adder/multiplier models from

PyRTL [12], a widely-used CNN model [13], dynamic power

and area models for NoC [14], specifications of Xilinx 7-series

FPGA [15] and the extended Hill-Marty model [16].

To describe Charm we begin in Section II with a motivating

example high-level model to show the problems with ad-hoc

modelling in practice. Then we introduce the design of Charm

in Section III followed by two case studies demonstrating

the application and benefits of building closed-form high-

level architectural models with Charm in Section IV. Finally

we discuss the related works in Section V and conclude in

Section VI.

II. Charm by Example

To understand Charm it is useful to have a running example.

In this section, we present an implementation of the model and

analysis from a well-cited study of dark silicon scaling [4].

After a brief review of the models, we show the complete

code in Charm performing the same analysis of symmetric

topology with ITRS technology scaling predictions. As we

extend this model to cover more analysis provided in [4], it

leads to a discussion of the potential issues with less structured

approaches and highlights some of the features of the language

that help architects avoid these pitfalls.

A. A Brief Review of the Dark Silicon Model

To forecast the degree to which dark silicon will become

prevelent on CMPs under process scaling, Esmaeilzadeh et

al. first construct three models: a device model (DevM), a

core model (CorM) and a CMP model (CmpM). DevM is

the technology scaling model relating tech node to frequency
scaling factor and power scaling factor. It is a composite

model combining a scaling prediction with a simple dynamic

power model (P = αCV2
dd f). CorM is the model relating

core performance, core power, and core area. It is empirically

deduced by fitting real processor data points. CmpM has two

flavors which are essentially very different models: CmpMU

and CmpMR. CmpMU is an extension of the Hill-Marty CMP

model [17] and CmpMR is a mechanistic model [18].

A composition of the three models is then used to drive

the design space exploration. The authors combine DevM and

CorM to look at CorM for different tech node and combine

DevM, CorM, and CmpM to iterate over a collections of

topologies, scaling predictions and core configurations. They

then plot the scaling curves for the dynamic topology/CmpMR

with both ITRS and a conservative scaling [19].

B. A Complete Charm Code Example

Listing 1 gives the complete code in Charm DSL to run

the design space exploration with ITRS predictions on the

symmetric topology (we later extend the analysis to other

topologies and predictions in Section IV-A). At a high level,

we can see that the code is split into three major components:

153

O
pt

im
al

 C
or

e
C

ou
nt

D
ar

k
Si

lic
on

 R
at

io

Tech node Tech node

Fig. 1. Upper-bound ITRS scaling with symmetric topology.

type definition (Line 3-82), model specification (Line 11-56)

and analysis declaration (Line 59-66).

Specifically, we first define commonly used domains as

Charm types on the architectural quantities we care about

(Line 3-8). For example, the parallelism parameter in the

model has a physical meaning of the proportion of the algo-

rithm that can be parallelized and it naturally falls between

[0, 1]. We thus define a type Fraction to encapsulate this

domain constraint. While this is a simple example, more

complex constraints are possible.

We then formally specify the three models (DevM, CorM,

CmpM) to evaluate (Line 11-56). Taking the ExtendedPollack-
sRule model (Line 34-41) as an example, it declares upfront

all the architectural quantities that are involved in the model

(e.g., ref core area which is the core size at the reference

technology node), their types (e.g., ref core area is a real

number on the positive domain) and the relationships be-

tween the architectural quantities, e.g., area = 0.0152per f 2 +

0.0265per f + 7.4393 (the constants come directly from the

original dark silicon paper [4]).

Once the models are defined, it is straightforward to declare

the analysis in Charm (Line 59-66). One simply selects the

given models in the study, supplies the inputs and specifies the

target metrics to explore. For example, in this case, we select

ITRS, ExtendedPollacksRule and SymmetricAmdahl models

(Line 59), provide values such as the area (Line 60) and power

(Line 61) constraints, and finally tell Charm what quantities

we care to explore, in this case speedup, dark silicon ratio
and core num (Line 66).

C. Unstructured High-level Architecture Modeling Pitfalls

Building and executing an architectural model with an

unstructured approach (e.g., in a spreadsheet or some general

purpose scripting language) is clearly possible3, but the lack

of a common abstraction introduces some issues as one tries

to scale the analysis. Each additional interacting component is

a set of new opportunities to make an uncaught mistake.

The degree to which these mistakes end up in the final

model (and the amount of effort required to make sure it

is mistake-free) is a function of the degree of composability,

reusability, consistency and completeness checking supported

2Line numbers in Section II all refer to Listing 1 unless otherwise specified.
3With all the potential issues, unstructured methods in architectural mod-

eling may not be as correct as one tends to believe [20], [21].

1 # Type definitions.
2 # A real number greater than 0.
3 typedef R+ : Real r
4 r > 0
5

6 # A real number between [0, 1].
7 typedef Fraction : Real f
8 0 < = f, f < = 1
9

10 # Simple Fit of the ITRS Scaling (DevM).
11 define ITRS:
12 ref_tech_node : R+ as ref_t
13 ref_core_performance : R+ as ref_perf
14 ref_core_power : R+ as ref_power
15 ref_core_area : R+ as ref_area
16 tech_node : R+ as t
17 core_performance : R+ as perf
18 core_power : R+ as power
19 core_area : R+ as area
20 perf_scaling_factor : R+ as a
21 power_scaling_factor : R+ as b
22 ref_t = 45
23 perf = a * ref_perf
24 power = b * ref_power
25 area / t**2 = ref_area / ref_t**2
26 a = piecewise((1., t=45), (1.09, t=32),
27 (2.38, t=22), (3.21, t=16),
28 (4.17, t=11), (3.85, t=8))
29 b = piecewise((1., t=45), (0.66, t=32),
30 (0.54, t=22), (0.38, t=16),
31 (0.25, t=11), (0.12, t=8))
32

33 # Pollock’s Rule Extended with Power (CorM).
34 define ExtendedPollacksRule:
35 ref_core_performance : R+ as perf
36 ref_core_area : R+ as area
37 ref_core_power : R+ as power
38 area = 0.0152*perf**2 + 0.0265*perf + 7.4393
39 power = 0.0002*perf**3 + 0.0009*perf**2
40 + 0.3859*perf - 0.0301
41 perf < 50
42

43 # Amdahl’s Law under Symmetric Multicore (CmpM_U).
44 define SymmetricAmdahl:
45 speedup : R+ as sp
46 core_performance : R+ as perf
47 core_area : R+ as a
48 core_power : R+ as power
49 core_num : R+ as N
50 chip_area : R+ as A
51 thermal_design_power : R+ as TDP
52 fraction_parallelism : Fraction as F
53 dark_silicon_ratio : Fraction as R
54 sp = 1 / ((1 - F) / perf + F / (perf * N))
55 N = min(floor(A / a), floor(TDP / power))
56 R * A = A - N * a
57

58 # Assumptions are now explicit and composable.
59 given ITRS, ExtendedPollacksRule , SymmetricAmdahl
60 assume chip_area = 111.0
61 assume thermal_design_power = 125.0
62 assume fraction_parallelism = [0.999, 0.99, 0.97,
63 0.95, 0.9, 0.8, 0.5]
64 assume tech_node = [45, 32, 22, 16, 11, 8]
65 assume ref_core_performance = linspace(0, 50, 0.05)
66 explore speedup, dark_silicon_ratio , core_num

Listing 1. Dark silicon analysis on symmetric topology with ITRS scaling.

154

by the tool. It is easiest to see this if we talk specifically again

about the code of our example dark silicon analysis.

We first note that, although clearly defined conceptually,

the three models needed are each of a different form: DevM
is essentially a table of different scaling factors, CorM is an

empirical set of points and a regression curve and CmpM is

in the form of mathematical equations relating a set of high-

level architectural quantities. Furthermore, even if they were

of the same form, they are not “functions” but rather a set of

mathematical relationships. The distinction is quite important.

With traditional lvalue / rvalue style assignments (common to

both functions and spreadsheets) you end up with four issues:

Composition: It is hard to link the models’ I/O together

or even check if the models can be connected properly

at all. Architectural models usually are connected to each

other through some common system parameters or physical

quantities. In this example, to do the dark silicon analysis,

one needs to take scaling factors from tables in DevM, pass

them as inputs to CorM, apply the values and re-fits the curve

for different tech node, after which one then has to sample

from the two Pareto curves in CorM and supply the samples

to CmpMU for final evaluation. This chain of data movement

and dependency is not explicitly exposed by the models, and

it takes some effort to understand how these models link

together. This issue of mismatched form is even more acute

when one wishes to switch out the CmpM core model with

the CmpMR core model because CmpMR takes a completely

different set of inputs. With unstructured methods, one has to

explicitly program these connections typically by function call

chains. With Charm, one simply specifies all variables upfront

within each model, and as long as the full variable names

are consistent, Charm “wires up” the models through these

channelling I/O variables. Perhaps most importantly, Charm

throws an error when the models cannot be properly linked.

For example, if one forgets to provide values for technology

node (Line 64), Charm will complain that too many variables

are free, or if the scaling model is about transistor rather

than processor core, as long as the variables are properly

named (e.g., one does not name transistor performance as core
performance), Charm will capture this mismatch and warn that

the models cannot be connected.

Restructuring and Reorientation: The models cannot be

evaluated in a flexible way. Even though the model is a

relationship between quantities, in spreadsheets or scripting

languages one has to implement the evaluation as functions

with fixed arguments. In this example, one typically codes

up to evaluate the speedup from given value of core perfor-
mance. If the control quantity is changed to another, say core
area, one has to fix the code. An even worse, and probably

more interesting, case is when the control becomes the one

under investigation, i.e., the input/output of the functions are

reversed. In our example here, it happens when one wishes to

explore the core count constraint given a target dark silicon

ratio. There is no easy way for ad hoc methods to deal with

this kind of flexibility but to completely reprogram. While in

Charm, models are interpreted as a set of mutually dependent

relationships without a fixed direction, and Charm runtime will

generate the needed functions based on the provided controls

and the quantities to explore.

Reasoning under Uncertainty: Architectural models usually

involve some uncertainties [16], such as how technology may

scale over the next 10-15 years. It is natural for computer

architects to first evaluate the model with some concrete values

(e.g., the scaling factors in Line 26, 29) and then model

the uncertain quantity as some distribution, e.g., Gaussian

distribution, as in our case studies in Section IV. It requires

non-trivial programming effort with spreadsheets and scripting

languages to support uncertain random variables. Charm sup-

ports different forms of input values such as scalars, vectors

as well as distributions to ease architectural exploration.

Exploration: The analysis procedure is often coupled with the

model definition. A common practice for computer architects

is to explore the design space by iterating over a set of design

options or different values for some system configuration

knobs. With the high-level models, architects usually write

imperative instructions to iterate over specific variables, and

when the iterative variable changes to another, it quickly

becomes tedious and error-prone to break and reconstruct the

many-fold nested for loops. Charm decouples the model spec-

ification (Line 11-56) from the analysis procedure declaration

(Line 59-66). Such iterations over input values are declarative

and transparent (as opposed to writing for loops imperatively)

by simply providing a list of values as inputs (Line 62, 64 and

65) in Charm.

Secondly, computer architectural quantities often have cer-

tain physical meanings. For example, core performance typi-

cally cannot be negative. A potential issue with unstructured

methods is that these boundaries are usually only programmed

ad hoc in spreadsheets or scripting languages. A negative core
performance may be totally mathematically valid and will
lead to meaningless misleading result if not captured in the

unstructured implementation. This issue is even more likely

to occur in the following two cases.

Implicit Domain Constraints: Architectural models typically

have their range of operation. Aside from the physical con-

straints, implicit domain constraints also come from how the

model is built at first place. In the dark silicon example, the

normalized performance of the real data points that the authors

used to generate the CorM is in the range of (0, 50). Even

though one can argue that a core with normalized performance
of 100 generally follows that regression but the result derived

from that is much less accurate and trusted. This type of

constraints are at most times only implicitly conveyed through

the model building process, where it leads to a potential

pitfall when the model is reused, especially when one only

tries to interpret and re-implement the model from natural

language descriptions (like in a published paper). While Charm

encourages model builders to put in these implicit constraints

explicitly as constraints built in the model specifications, e.g.,

Line 41. Charm will automatically check to see if these

155

var, rn, tn ∈ Name rel ∈ Relation

val ∈ Value

p ∈ Program :=
−→
td
−−−→
rde f −→a explore −−→var

td ∈ TypeDe f inition := typedef tn
−→
rel

rde f ∈ RuleDe f inition := define rn
−−−−→
rdecl

rdecl ∈ RuleDeclaration := var tn | rel

a ∈ AnalyzeS tatement := given −→rn | assume −−−→asmt

asmt ∈ Assignment := var = val

Fig. 2. Abstract syntax of charm. A program is a sequence of type
definitions, rule definitions, analysis statements, and a list of variables to
explore. Relations are atomic with respect to the semantics; they use the
syntax and semantics of the backend solver. They use the standard arithmetic
and comparison operators, and allow lists, tuples, and real numbers as possible
values.

constraints are violated during evaluation.

Unbounded Distributions: Many architectural quantities fol-

low normal distribution such as core frequency due to process

variability [22]–[24]. When using these types of unbounded

distributions, it sometimes violates the physical constraints

of the quantity (frequency must be positive). In unstructured

modeling, this check is completely ad hoc and, if overlooked,

will lead to meaningless results. With Charm, this issue is

automatically handled by the type checker, as long as one

specifies a correct type for the quantity, e.g., frequency : R+.

Last but not least, the design space to cover is typically huge

with high-level models. In the dark silicon model, the authors

explore a hundred core configurations for each combination of

a scaling trend in DevM and a CMP model from CmpMU or a

workload with CmpMR. The models are often to be evaluated

hundreds of thousands, if not millions, of times which will

take a non-trivial amount of time. It only becomes worse when

one tries to evaluate models with uncertainties [16]. Without

a structured system, a quick spreadsheet or naive prototyping

will end up with unacceptable performance when the problem

is scaled up and the burden of optimization falls upon the

model builders and others who wish to use existing models

through re-implementation. As we show in Section IV, with

the invariant hoisting and memoization techniques, Charm

greatly speeds up the exploration without additional effort from

the model builders.

III. Charm Design

Charm provides a simple domain specific modeling lan-

guage to express both closed-form models and the design

space exploration dimensions. The DSL has an easy-to-use

Python-like syntax. In terms of mathematical expressiveness,

Charm supports all common closed-form algebra that com-

puter architects often resort to, including linear algebra like

polynomials and simple non-linear algebra like exponentiation.

Basic non-closed-form functions like summation and product

are also supported. To enhance the design space exploration to

uncertain domains, Charm also supports distributional values

to be set and propagated through the models transparently.

Once written in Charm DSL, the interpreter is able to trans-

form the mathematical relationships and constraints into a

series of data-flow graphs for fast evaluation. A type system is

applied to make sure all architecturally meaningful quantities

operate in the correct domain. Charm also optimizes the design

space exploration procedure using compiler techniques to

eliminate redundant computation. Figure 4 graphically shows

the interpretation process.

In this section, we first describe the abstractions Charm

provides and formalize the syntax and semantics of Charm

DSL. We then articulate the internal design of the interpreter

and how type checking, definability checking, evaluation and

optimization are done in Charm.

A. Language Abstractions

Charm provides a common layer with three key abstractions

to address all the potential issues in Section II-C. In Charm

DSL, five keywords are reserved to express three abstractions:

types, models and analysis.

Keyword typedef translates into the first abstraction: type.

The type system is designed to be simple but useful: each type

is essentially a base type with constraints, e.g., R+ is defined

as a positive number of base type real in Listing 1 Line 3-4.

There are only two base types, Real and Integer standing for

real numbers and integer numbers respectively. Internally, real

numbers are represented by float and integers by int.
The second key abstraction is model. Keyword define con-

structs a model. A model specification in Charm encapsulates

the following three pieces in a high-level architecture model.

A set of variables. Each variable has a universally consistent

full name. Each variable also has a local short name (optional),

as well as explicitly declared types. The short names only live

within the definition and the full names are exported to other

models and the analysis.

A set of equations. Equations define mathematical relation-

ships between variables using either their full or short names

(e.g., Listing 1 Line 54-56). Both linear and nonlinear systems

are present in the common architectural models we care about.

The general problem of trying to determine the definability

of and solving such systems is theoretically hard and beyond

the scope of this work. Given the limitations of the solving

capabilities of the back-end solvers, some very complicated

non-linear equations cannot be symbolically solved (e.g.,

solve for x in y = (a1/x)2x
). Fortunately, we find that most

models computer architects care about (even complicated as

quantum computing in Section IV-B) are well within the

limit. Equations can also bind variables to constant quantities

as assumptions defined within the model specification (e.g.,

kBoltzmann = 8.6173303 × 105).

A set of constraints. Inequalities define additional constraints

on variables or expressions (e.g., Listing 1 Line 41). The

difference between equations and constraints in Charm is that

equations can be value generative if all but one variable are

156

C,D, E,Ω ∈ RelationS et Γ ∈ TypeEnvironment = Name→ RelationS et
Θ ∈ RuleEnvironment = Name→ RelationS et μ ∈ VariableMap = Name→ Value

C =
{
c | c ∈ −→rel

}

typedef tn
−→
rel ⇓T (tn,C)

typedef

(Γ, rdecli) ⇓ Ci C =
⋃

Ci

i ∈ 1..|−−−−→rdecl|(
Γ, define rn

−−−−→
rdecl

)
⇓R (rn,C)

ruledef Γ (tn) = C
(Γ, var tn) ⇓ C [var/tn]

rd-var

(, rel) ⇓ {rel} rd-rel
Ci = Θ (rni) C =

⋃
Ci i ∈ 0..|−→rn|(

Θ, given −→rn
)
⇓A C

given (
, assume −−−→asmt

)
⇓A

{
e | e ∈ −−−→asmt

} assume

Ext(x) = ∅∨ Ext(y) = ∅∨ Ext(x) = Ext(y),∀x, y ∈ vars(rel)

ω =
{
α(a) | a ∈ ⋃ Ext(bi),∀bi ∈ vars(rel)

}
α(a) = rel

[
x.a/x,∀x ∈ vars(rel)

]
rel ⇓M ω

multi-instance

Γ(tni) = Ci where tdi ⇓T (tni,Ci) Θ(rn j) = Dj where
(
Γ, rde f j

)
⇓R (rn j,Dj)

Ω =
⋃

Ek where (Θ, ak) ⇓A Ek Ω′ =
⋃{ω | rel ⇓M ω

∧
rel ∈ Ω} isConsistent (Ω′)

isFullyDetermined
(
Ω′,−−→var

)
μ = SOLVE

(
Ω′,−−→var

)
i ∈ 1..|−→td| j ∈ 1..|−−−→rde f | k ∈ 1..|−→a |

−→
td
−−−→
rde f −→a explore −−→var ⇓P μ

program

Fig. 3. Operational semantics of Charm. Relations are here taken as atoms; they use the semantics of the backend solver engine. An overhead arrow indicates
a sequence of one or more elements. C[x/y] indicates to substitute all instances of y in C with x. vars returns the names of all variables used in the relation
set, while Ext returns all extensions of a variable (portion of the name appearing after a dot when multi-instanced). isConsistent ensures the relation set
is consistent. isFullyDetermined ensures the relation set is fully determined with respect to −−→var. SOLVE is an instance of the backend solver; it returns a
mapping of all specified variables to values (real numbers, lists, and tuples). typedef takes a type definition and returns a tuple with type name and relation
set. ruledef takes a rule definition and the type environment and returns a tuple with rule name and relation set. rd-var takes a type rule declaration and the
type environment and returns a relation set, where relations on the indicated type now apply to the indicated variable. rd-rel takes a relation rule declaration
and returns the same relation in a set. given takes a given analyze statement and the rule definitions and returns the relation set of the indicated rule. assume
takes an assume analyze statement and returns a relation set of all the declared equalities. multi-instance takes a relation and returns a set of relations, where
the original relation is duplicated once for each extension possessed by its variables, with the names of the variables replaced by their extended version (as
discussed in section III-B). program takes a program and returns a map for the list of exploration variables, mapping each to real numbers, lists, and tuples
determined by the backend solver.

given, while constraints require all variables given during

evaluation. Inequalities are by definition constraints and, when

all variables are given, an equation is over-determined and

turns into a constraint. We refer to the set of both equations

and constraints as relations.

Charm DSL accepts different mathematically equivalent

forms of relations, so that different modelers with different

background expertise can write the math in the conventional

way of their own fields and use other models directly as they

are without rewriting.

The Charm DSL is strongly typed. The model abstraction

enforces explicit type declaration to make sure there are not

implicit assumptions about data types and domains across

models.

Charm abstracts the common structure of an analysis with

three keywords: given, assume and explore.

Before computation, given statement selects the model in

the analysis. If multiple models are selected, they are linked

together automatically by the interpreter. Full names of vari-

ables are used to connect each other across models.

Although in general, many algebra systems can be solved

without additional inputs, for computer architecture models,

at most times, some control quantities need to be given (e.g.,

design options like core size and system configurations like

cache associativity) in order to solve for the quantities under

investigation (e.g., speedup of a CMP). Keyword assume
serves such purpose by differentiating assignment equal signs

from mathematical equal signs inside model specification, i.e.,

assume statements are assignments much like in other pro-

gramming languages while equations in model specification

are merely mathematical relationships which do not imply a

direction of data movement. Charm also constrains assume
statements to be assignment with constants, i.e., they can only

be used to express external inputs to the model rather than

defining additional relations outside of the model specification.

Charm supports both scalar and vector value assignments,

as well as random variable of commonly used distributions,

e.g., Gaussian Distribution.

Iteration is expressed in a Pythonic list-like syntax or

functions that generates a list, e.g., linspace, and assigned

157

ParsingCharm Source Code

Models Analysis

let ...
assume ...
explore ...
...

+

Type
Checking

Model
Linking

Dependency Graph

Eq1

a
b c

Eq2

d
Eq3

Function
Generation

Functional Graph

Fn3

Fn1

a

b
Fn2

c

e

e

d

Symbolic
Solving

Optimization

Optimized Functional Graph

Fn3

Fn1

a

b
Fn2

c
e

d
Evaluation

c

e

Constraint
Checking

Con1

Con1

Con1
LoopInvariant

Data
Structures

Interpreter

I+
R+
Rϵ[0, 1]
...

Types

+
5 * a = b / 2,
b * c = d + 1,

d ** 2 + a = 3 * e,
a + 4 * e > 0

Fig. 4. Overview of Charm interpreter. The example system has 3 equations
(Eq1, Eq2 and Eq3), 1 constraint (Con1) and 5 variables in which c is
the iterative input. In this example, we are tying to explore the relationship
between e and c given a. The parser takes Charm source code and breaks it
into a set of types, a set of model definitions and a set of analysis statements.
Charm then links types, models and assignments in a dependency graph after
they go through the type checker. The graph then is fed to a function generator
and a symbolic solver to convert it into a functional graph. The optimizer
finally takes the functional graph and annotate it with hints for execution
before it finally gets evaluated and checked against model constraints.

to some input variable just like a normal assume statement

(e.g., Listing 1 Line 65). Charm handles iteration naturally

by selecting combinations of all iterative input values non-

repeatedly from their Cartesian space in a Gray code fashion.

Two special cases are: a), if two or more input variables

are dependent, they can be expressed like Python tuple as-

signment, e.g., assume (tech node, f req scaling f actor) =

[(45, 1.), (32, 1.09)] and b), if a variable is indexed, it can be

expressed using special “list” notation after its variable name,

e.g., assume L[] = [1, 2], which means L[0] = 1 and L[1] = 2.

These notations become handy when we write the quantum

models with Charm in Section IV-B.

Finally, an analysis is completed by specifying which quan-

tities to solve for symbolically and evaluate using explore.

Charm exploits a data-flow centric approach and builds a

directed acyclic functional graph internally to propagate given

values through linked models to the final responsive variables

architects wish to explore.

Figure 2 gives the abstract syntax of Charm and Figure 3

formalizes the semantics.

B. Language Internals

In order to evaluate the models and optimize the evaluation

logic, Charm uses two data-flow graph structures internally to

represent and transform the computation. In this section, we

first define the core graph data structures and then describe

how we can perform type checking, function generation,

evaluation and optimization with these graph structure.

Dependency Graph. A dependency graph is a bipartite graph

G =< Vvar,Vrel, E >, where:

• Vvar is the variable node set in which every variable in

the selected models is a vertex.

• Vrel is the relation node set and Vrel = Veq ∪ Vcon, where

Veq is the set of vertices in which every equation in the

selected models is a vertex; Vcon is the set of vertices in

which every constraint in the selected models is a vertex.

• E is the set of edges and there exists an edge between

vertices in Vvar and Vrel if and only if the variable name

appears in the relation.

Functional Graph. A functional graph is a directed acyclic
dependency graph D in which:

• Every node in Vvar has at most 1 incoming edge, i.e., its

in-degree being 0 or 1.

• Every node in Veq has at most 1 outgoing edge, i.e., its

out-degree being 0 or 1.

• Every node in Vcon has no outgoing edge, i.e., its out-

degree being 0.

Dependency graph building and static type checking. To

build the dependency graph from the models, Charm performs

a single scan over all relations in the models. It assigns a

variable node to every variables with a unique full name (in-

cluding variables automatically generated by multi-instancing)

and an equation/constraint node to every equation/constraint.

When creating relation node, Charm creates an edge between

158

the equation/constraint node to a variable node if the variable

is used in the equation/constraint. Finally, Charm scans the

analysis statements and marks variable nodes being assigned

as input nodes.

Charm performs simple type checking both statically when

building the dependency graph after parsing and dynamically

when checking constraints at runtime. Static type checking is

done by tracking the variable names and types when building

the dependency graph. Each variable must be declared with

an explicitly defined type. If a variable name is used by

two or more relations, we check that their defined types are

identical (both base type and constraints associated). Charm

aborts execution and issues an error message for inconsistent

types.

Relation Multi-instancing. When building a dependency

graph, different variables sometimes follow the same math-

ematical relationships. An example is core per f ormance.big
and core per f ormance.small defined in Listing 2 Line 5-

6. Both of them follow equation in Listing 1 Line 23 when

plugged in for evaluation. We discuss their physical meanings

later in Section IV-A, but they are essentially two variables

following the same mathematical relationship. We refer this

behavior as “relation multi-instancing” and use the dot nota-

tion (a variable name and a name extension concatenated by

dot, e.g., core area.big) to invoke multi-instancing. Charm in-

ternally creates variable nodes and relation nodes for multiple

instances with different name extensions. Figure 5 shows how

these nodes in the dependency graph are created. The model is

ill-defined if Charm fails to find extended input variables with

consistent name extensions or discovers inconsistent name

extension sets for different variables trying to invoke multi-

instancing.

Functional graph building and function generation. After

building the dependency graph G, the function converter tries

to convert G into a functional graph F. If it can convert

successfully, there is a viable solution when all equations or

sets of equations can be solved and lambdified by the back-end

symbolic solver, and therefore the models can be evaluated by

Charm.

The function converter backtracks through G in a DFS

manner and tries to label all the edges with a direction

without introducing a conflict. A conflict occurs when an

equation node has more than one outgoing edges or when

an inequality node has any outgoing edge or when a vari-

able node (excluding input nodes) does not have exact one

incoming edge. If there is a successful labeling of all edges,

Charm uses Sympy [25] as the back-end solver to convert all

equations and constraints (all inequalities and equation nodes

with an out-degree of 0 are considered as constraints at this

point) into callable functions with inputs being the variables

directly pointing to the equation/constraint and output being

the variable pointed at by the equation node. As part of

type checking, each variable node is also associated with

the constraint from its type. These type constraints are also

lambdified and evaluated during evaluation. The search space

a.

Eq3

Eq1

a

b
Eq2

c

b.2

b.1

d.1

Eq1.1
Eq2

c

b.2

b.1

d.2

Eq1.2

Eq3.1

Eq1.1

a.1

Eq2

c

d.1

b.2

b.1

Eq3.2
a.2

Eq1.2

b.

Eq3

Eq1

a

Eq2

c

b.2

b.1

b.2

b.1

d.2

e e

e

e

c.d.

a.1
a.2

Eq3.1

Eq3.2

d.2

d.1

d.2

d.1

Fig. 5. Relation multi-instancing when generating dependency graph. a) The
initial graph has extended names (b.1, b.2). b) Charm finds and splits the
corresponding base name node. c) Charm propagates the multi-instancing,
i.e., all nodes connected to the base name node (b) are also split. Then
Charm merges names with same extension together. d) The multi-instancing
ends with checking input nodes for identical name extensions and removing
edges between non-consistent name extensions. In this case, it ends when
the split process reaches d and e, successfully finds d.1 and d.2 which are
extended names with consistent name extension set ({.1, .2} in this example)
and removes the edges between (d.1, Eq3.2) and (d.2, Eq3.1).

a.

Eq3

Eq1

a

b Eq2 c

d

b.

ef

Con1

a

b

d

e

f

c

Con1

Fn_a

Fn_b

Fn_d

Fig. 6. Cycle elimination when generating functional graph. Equations in a
cycle are solved at once and are replaced with three functions, each of which
generates a different variable value.

for conversion is in practice greatly reduced by the following

heuristics:

• All edges with one node being input node have fixed

direction (from the input node).

• All edges with one node being a dangling variable node

(variable node that has only one edge) have fixed direction

(to the variable node).

• All edges with one node being a constraint have fixed

direction (to the constraint node).

Cycle elimination. A functional graph F must be acyclic

159

in order to evaluate. However, when there are codependent

equations, they form cycles. In case of a cycle, all equation

nodes in the cycle must be solved altogether. We pass the

equations in a cycle to the solver at once and then replace the

cycle with pairs of function node and variable node, where

each pair is a mapping between all inputs to the cycle (a

dummy input node is created if there are no inputs from

other parts of the graph to the cycle) and one variable node

inside the cycle. Each function node generated by the cycle

has one variable along the cycle as its output and all functions

generated by the cycle are from the same set of equations, only

with different variables as output. Figure 6 shows an example

of cycle elimination in F.

Computational constraints. A special computational con-

straint is applied when building a functional graph: some

mathematical operators are not reversible or have infinite

solutions, such as
∑

and
∏

, some are computationally hard

for the solver, like solving x in y = (a1/x)2x
. For the non-

reversible equation, its direction is fixed, i.e. its edges have

fixed direction not subject to the function converter.

Evaluation and constraint checking. Once we have a viable

functional graph F, a feasible solution is to derive from all

input nodes and propagate the given values by traversing

F. Each following function/constraint node is transformed

using higher-order functions to “remember” propagated partial

values before all inputs are ready and it can be evaluated.

Optimization. Oftentimes architects explore the relationship

between two variables by iterating over different input values.

One simple yet effective optimization is invariant hoisting.

With the functional graph structure, it is straightforward to

optimize for invariant in Charm. From each iterative variable

node, Charm simply traverse from that node, then all nodes

that cannot be reached from the iterative input nodes are

invariant to iteration over that input. In the simple illustrative

example in Figure 4, c is iterative and a, b, Fn1 are invariant

because there are not paths from c to them.

Each function node also caches a mapping table between

inputs and its output. Such memoization optimizes away

unnecessary re-computation over same set of input values.

IV. Case Studies

In this section, we demonstrate the application of Charm

using two case studies. In the first case study, we show

the benefits of Charm by extending the dark silicon analysis

with a different topology and a distribution of technology

scaling. We also compare the execution times with and without

optimization.

The second case study focuses more on the problem of

modeling a critical resource in fault-tolerant quantum comput-

ing and performs exploration with varying physical error rate.

Interestingly, when validating Charm results in the second case

study, Charm helps find inconsistent model definition errors,

which are silently propagated through by Mathematica [26]

and would have led to incorrect results.

1 # Amdahl’s Law under Asymmetric Multicore (CmpM_U).
2 define AsymmetricAmdahl:
3 speedup : R+ as sp
4 # here we need two types of perf, area, power
5 core_performance.big : R+ as big_perf
6 core_performance.small : R+ as small_perf
7 core_area.big : R+ as big_a
8 core_area.small : R+ as small_a
9 core_power.big : R+ as big_power

10 core_power.small : R+ as small_power
11 core_num : R+ as N
12 chip_area : R+ as A
13 thermal_design_power : R+ as TDP
14 fraction_parallelism : Fraction as F
15 dark_silicon_ratio : Fraction as R
16 sp = 1 / ((1-F)/big_perf + F/(N*small_perf+

big_perf))
17 N = min(floor((A - big_a)/small_a),
18 floor((TDP - big_power)/small_power))
19 R * A = A - (N * small_a + big_a)
20 big_perf >= small_perf
21

22 given ITRS, ExtendedPollacksRule , AsymmetricAmdahl
23 assume ref_core_performance.big=linspace(0,50,0.05)
24 assume ref_core_performance.small=linspace

(0,50,0.05)

Listing 2. Asymmetric model and the changes in code.

1 # Conservative scaling model (DevM).
2 define ConservativeScaling:
3 ...
4 a = piecewise((1., t=45), (1.10, t=32),
5 (1.19, t=22), (1.25, t=16),
6 (1.30, t=11), (1.34, t=8))
7 b = piecewise((1., t=45), (0.71, t=32),
8 (0.52, t=22), (0.39, t=16),
9 (0.29, t=11), (0.22, t=8))

10

11 given ConservativeScaling , ExtendedPollacksRule ,
AsymmetricAmdahl

Listing 3. Conservative scaling and the changes in code.

A. Dark Silicon and Beyond

Listing 2 highlights all the changes that we need to imple-

ment in Charm to model and switch the DSE from symmetric

topology to asymmetric. Note that in the asymmetric model,

“relation multi-instancing” comes in handy when expressing

two co-existing types of core. To switch the analysis, all we

need to do is to change the models that are given (Listing 2

Line 22) and provide values for two types of core instead of

one (Listing 2 Line 23-24). We also write a new constraint

(Listing 2 Line 20) to specify the fact that the big core should

have better performance than the small core.

It’s even simpler to switch from ITRS scaling predictions

to the conservative predictions [19]. Listing 3 shows all the

changes needed. Figure 7 plots the resulting scaling trends for

the asymmetric topology.

One interesting question one may ask is “what if the
actual technology scaling is somewhere in between the two
predictions?” We explore the design space with a distribution

of scaling factors. We use a Gaussian distribution for the

scaling factor, the mean of which being the average value

160

O
pt

im
al

 C
or

e
C

ou
nt

Sp
ee

du
p

D
ar

k
Si

lic
on

 R
at

io

IT
RS

C
on

se
rv
at
iv
e

U
nc
er
ta
in

O
pt

im
al

 C
or

e
C

ou
nt

Sp
ee

du
p

D
ar

k
Si

lic
on

 R
at

io

O
pt

im
al

 C
or

e
C

ou
nt

Sp
ee

du
p

D
ar

k
Si

lic
on

 R
at

io

Fig. 7. Upper-bound scaling with asymmetric topology with tech node on x-axis. Note that the last figure of optimal core count has a linear-scale y-axis to
better demonstrate the variance. For clarity we only plot two regions in the uncertain scaling results, but the trends for other f values are similar.

between the two extremities and the standard deviation being

the difference between the mean and the extremities. Listing 4

shows the necessary changes in Charm code. It is important

that although Gaussian distribution is not bounded, the scaling

factors have a bounded domain. The type checking in Charm

makes sure that the scaling factors a and b operate only in their

defined domains (see Listing 1 Line 20-21), and the provided

Gaussian distribution is converted to a truncated Gaussian

distribution with the same mean and standard deviation within

Charm. From Figure 7, we can see that with the technology

scaling, the more parallel workload (with an f close to 1)

shows more sensitivity towards technology uncertainties while

the more serial workload is less sensitive to the changes in

the core performance and power. Another probably even more

interesting observation is that the optimal core count of the

most performant configuration becomes very uncertain once

we hit 11nm and beyond. The uncertainty grows sharply from

16nm to 11nm mainly because below 11nm, the CMP is

mainly area bounded, and since the area scaling is certain

(Listing 1 Line 25), it limits the amount of uncertainty that

gets propagated to the optimal core count. Meanwhile, when

the tech node scales to 11nm and beyond, the CMP becomes

power bounded and is extremely sensitive to the power

uncertainties propagated from the uncertainty of the power

scaling factor.

Figure 8 shows the actual functional graph generated by

Charm. In terms of execution performance, we compare

1 # Distributional scaling model (DevM).
2 define DistScaling:
3 ...
4 a = piecewise((1.,t=45),(Gauss(1.095,0.005),t=32),
5 (Gauss(1.785,0.595),t=22),(Gauss(2.23,0.98),t=16),
6 (Gauss(2.735,1.435),t=11),(Gauss(2.595,1.255),t=8)

)
7 b = piecewise((1.,t=45),(Gauss(0.685,0.025),t=32),
8 (Gauss(0.53,0.01),t=22),(Gauss(0.385,0.005),t=16),
9 (Gauss(0.27,0.02),t=11),(Gauss(0.17,0.05),t=8))

10

11 given DistScaling , ExtendedPollacksRule ,
AsymmetricAmdahl

Listing 4. Uncertain scaling and the changes in code.

Charm execution to an unoptimized baseline in which all

computation is re-done per iteration (no invariant hoisting

nor memoization). For ITRS or conservative scaling with

asymmetric topology (a design space of 150K design points),

full-blown Charm finishes on average within 120.5s, while the

unoptimized implementation uses 159.5s (1.3X speedup). For

the uncertain scaling with a MC sample size of 200 (1̃ million

design points), optimized Charm uses 1562.5s, and it takes

5703.1s for the baseline implementation (3.6X speedup) on a

single Intel i7 core at 3.3GHz to finish.

161

(20)

(23)

38'

15'
12

25'

16

(12)

7

39'

14'

25'

8

(19)

(15)

(17)

(11)

(13)

(24) 20

38'

15'

24'

39'

23' 23'

21'

14'

5 6

24'

9

10
(14)

(16)

(3)

26

29'

21'

29'

Fig. 8. Functional graph generated by Charm for asymmetric dark silicon
model. Node labels correspond to line numbers in Charm source code. As we
present the asymmetric model code separately from the rest, plain numbers
correspond to lines in Listing 1, and numbers in parenthesis correspond to
lines in Listing 2. Numbers with prime (e.g., 21’) are cloned names/equations
generated by Charm from the same line of code.

B. Surface Code Error Corrected Quantum Application and
Architecture Co-optimization

In this section, a high level model for the resource overhead

for implementing magic state distillation on surface code [5]–

[7] is described and implemented within the Charm frame-

work, which is used to pinpoint nontrivial interactions between

fundamental system parameters.

For this study, we focus primarily on the Bravyi-Haah

“3k + 8 → k” procedure [5] augmented with the block-

code protocol. By recursively stacking magic state distillation

protocols in a tree-like fashion, one can generate arbitrarily

high-fidelity magic states, which is required by a quantum

program [7]. The space required by one round of Bravyi-Haah

magic state distillation is given by the number of physical

qubits required to run the circuit. Using block code, the

procedure will consume (3k+8)�−1(6k+14)d2 physical qubits,

where d is the surface code distance we are using.

Adding more factory capacity K results in more output

magic state capacity (higher effective rate). However this also

adds more components to the factory that may fail. In fact,

a magic state factory has a yield rate proportional to the

output capacity K that is caused by uncertainty in the success

probability of the underlying Bravyi-Haah protocol. This yield

rate scales as:

Koutput = k� ×
�∏

r=1

[
1 − (3k + 8)εr

]
(1)

where εr = (1 + 3k)2r−1ε2
r

in
, because each level of the process

results in incrementally higher fidelity (i.e., lower error rate).

Given a T gate request distribution D representing a pro-

gram, the number of iterations needed to distill is:

Tpeak∑
t=0

(
s · √K′ +

√
t − sK′

2
· R
)
· Lcp · D[t], (2)

where s =
⌊

t
K′
⌋
, and R = 7d+15

24d� . All of these equations combine

to form a high level space-time estimate of the resources

required to execute a quantum application on a machine with

a specified magic state distillation factory architecture.

Using Charm, we are able to analyze the underlying sensi-

tivity of different magic state factory architectures to variations

in the underlying error rate of the physical system. We examine

two different design cases, one where the factory is designed

assuming a 10−3 error rate, and one assuming a 10−5 error

rate. Figure 9 illustrates that while the time-optimal factory

does show a lower expected space-time volume, it also shows

significantly higher uncertainty and spreads in performance

values over the space-optimal factory. This design point clearly

motivates that quantifying the uncertainty of a physical device

is necessary to lead to risk-optimal system designs that per-

form well on a given system.

Charm is able to discover and quantify this trend with

minimum effort, and allows for a quantitative analysis to be

performed on these designs that will aid the construction of

physical systems. Additionally, implementing this high level

performance model in Charm allows for validation and more

domain-specific error catching that previous implementations

in Mathematica has been unable to catch. Specifically, a

previous implementation has an incorrect parameter passed

into a distance calculation function that Mathematica allowed

to flow through. Charm is able to detect this error, warns that

the models cannot be connected properly which helped correct

the results of the model.

V. RelatedWork

A. Closed-form Architecture Models

Many of the recently developed high-level analytical models

are conceptually inherent from the well known Amdahl’s

Law [27], which is often expressed as a closed-form perfor-

mance model of parallel programs. The most well studied

derivative is the multicore performance model by Hill and

Marty [17]. A long line of research work using extensions

of their closed-form model focus on different aspects of

the system, including application [28], communication and

synchronization [29], [30], energy and power consumption [4],

[31], heterogeneity [11], [32], chip reliability [33], architec-

tural risk [16] and so on. Our language consumes these models

and provides a systematic way to establish new high-level

models either by constructing new equations and constraints

or reusing those from the above models.

Another set of analytical performance model is built directly

from the mechanisms of the specific system [8], [9], [34]–

[42]. These models usually rely on some simulations/hardware

counter to collect the necessary inputs to their core closed-

form equations. Our language can also express and manage

these equations. Empirical modeling [43]–[51] is also used to

162

l = 2, K=50l = 1, K=1 l = 2, K=1 l = 1, K=50l = 1, K=1 l = 2, K=1 l = 1, K=50 l = 2, K=50

Fig. 9. Factories designed with an implied low physical error rate only require concatenation up to � = 1 level, while more pessimistic factories require
� = 2. While larger factories with K = 50 consistently show lower mean space-time consumption, they also suffer from large performance uncertainty when
the assumed design error rate varies.

discover correlation between two or more architectural quanti-

ties. They can usually be expressed as parametrized equations

in closed-form, the resulting models of such empirical methods

can also be managed by and benefit from Charm.

B. Systems and Languages Supporting Analytical Modeling

There exist systems and languages that support structured

analytical modeling. Modelica [52] supports multi-domain an-

alytical modeling with an emphasis on object-oriented model

composition, but the connection of models need to be ex-

plicitly dictated and the design space exploration require user

intervention, while Charm is more restricted and thus able

to automatically link models and generate exploration loops.

Aspen [53] provides a DSL to express application and an

abstract machine organization in order to model performance.

Palm [54] utilizes source code annotation to build analytical

model for the application. LSE [55] is a fully concurrent-

structural modeling framework designed to maximize reusabil-

ity of components. There are also many other works in the field

of HPC for automatic performance modelling extracting [56]–

[58]. Most of these languages and systems serve a different

purpose of expressing mapping between performance/power

model and specific detailed application/architecture and are not

well-suited for high-level analytical design space exploration.

While Charm is tailored for structured yet flexible exploration

of the interactions between architectural variables as well as

their ramifications at a high level. There are also a few systems

exploiting the power of symbolic execution for modeling [16],

[20], but Charm provides more capabilities around formal-

izing, checking and evaluating the models. There also exits

a tool [59] of the same name CHARM (Chip-architecture

Planning Tool) which uses a knowledge-based scheme to ease

high-level synthesis.

The internals of Charm resemble some of the data-flow cen-

tered programming languages in the field of incremental/reac-

tive programming [60]–[64] but differ in that Charm is highly

restrictive. The restrictiveness means that Charm is more of

a modeling language rather than a programming language,

i.e., Charm does not support general purpose structures like

loops and function calls but supports a malleability useful for

exploration (e.g., reversing input/output dependencies).

VI. Conclusion

Computer architecture is a rapidly evolving field. Com-

plex and intricately interacting constraints around energy,

temperature, performance, cost, and fabrication create a web

of relationships. As we move toward more heterogeneous

and accelerator-heavy techniques, our understanding of these

relationships is more fundamental to the process of design

and evaluation than ever before. Already today we are seeing

machine learning [65], cryptography [66], and other fields

attempting to pull architectural analysis into their own work –

sometimes introducing serious bugs along the way. Architec-

ture is now a field that is expected to make scientific statements

connecting nanoscale device details to the largest warehouse

scale computers and everything in between. Spanning these

11 orders of magnitude will require more complex analytic

approaches to be used in tandem with the traditional simulation

and prototyping tools that computer architects have long relied

on.

Charm provides domain specific language support for ar-

chitecture modeling in a way that leads to more flexible,

scalable, shareable, and correct analytic models. While our lan-

guage already supports symbolic restructuring, memoization,

hoisting, and several optimization and consistency checks,

Charm is merely the first step towards a more powerful and

useful modeling language for computer architects. It is easy to

imagine other useful additions in the future such as checks on

the consistency of physical types (e.g., nJ versus pJ errors) or

back-ends connecting models to non-linear optimizers. Most

importantly though, by giving the sets of mutually dependent

architectural relationships a common language, Charm along

with the collection of established models have the potential

to enable more complete and precise specification, easier

composition, more through checking, and (most importantly)

broader reuse and sharing of complex analytic models. Look-

ing forward we see that tools such as this hold significant

promise in enabling more collaborative and community driven

efforts that make our best thinking on the future of architecture

more readily and easily accessible to all that are interested.

Acknowledgment

This material is based upon work supported by the National

Science Foundation under Grants No. 1740352, 1730309,

1717779, 1563935, 1444481, 1341058, 1730449, 1660686,

Los Alamos National Laboratory and the U.S. Department

of Defense under subcontract 431682 and gifts from Cisco

Systems and Intel Corporation.

The authors would like to thank Michael Christensen for

his help with formalizing the semantics and the anonymous

reviewers for their invaluable feedback.

163

References

[1] J. Bornholt, R. Lopez, D. M. Carmean, L. Ceze, G. Seelig, and
K. Strauss, “A dna-based archival storage system,” in Proceedings of
the Twenty-First International Conference on Architectural Support for
Programming Languages and Operating Systems, ser. ASPLOS ’16.
New York, NY, USA: ACM, 2016, pp. 637–649. [Online]. Available:
http://doi.acm.org/10.1145/2872362.2872397

[2] A. Javadi-Abhari, P. Gokhale, A. Holmes, D. Franklin, K. R. Brown,
M. Martonosi, and F. T. Chong, “Optimized surface code communication
in superconducting quantum computers,” in Proceedings of the 50th
Annual IEEE/ACM International Symposium on Microarchitecture, ser.
MICRO-50 ’17. New York, NY, USA: ACM, 2017, pp. 692–705.
[Online]. Available: http://doi.acm.org/10.1145/3123939.3123949

[3] X. Fu, M. A. Rol, C. C. Bultink, J. van Someren, N. Khammassi,
I. Ashraf, R. F. L. Vermeulen, J. C. de Sterke, W. J.
Vlothuizen, R. N. Schouten, C. G. Almudever, L. DiCarlo, and
K. Bertels, “An experimental microarchitecture for a superconducting
quantum processor,” in Proceedings of the 50th Annual IEEE/ACM
International Symposium on Microarchitecture, ser. MICRO-50 ’17.
New York, NY, USA: ACM, 2017, pp. 813–825. [Online]. Available:
http://doi.acm.org/10.1145/3123939.3123952

[4] H. Esmaeilzadeh, E. Blem, R. St. Amant, K. Sankaralingam, and
D. Burger, “Dark silicon and the end of multicore scaling,” in
Proceedings of the 38th Annual International Symposium on Computer
Architecture, ser. ISCA ’11. New York, NY, USA: ACM, 2011, pp. 365–
376. [Online]. Available: http://doi.acm.org/10.1145/2000064.2000108

[5] S. Bravyi and J. Haah, “Magic-state distillation with low overhead,”
Physical Review A, vol. 86, no. 5, p. 052329, 2012.

[6] A. G. Fowler, S. J. Devitt, and C. Jones, “Surface code implementation
of block code state distillation,” Scientific Reports, vol. 3, p. 1939, jun
2013.

[7] J. O’Gorman and E. T. Campbell, “Quantum computation with realistic
magic-state factories,” Physical Review A, vol. 95, no. 3, p. 032338,
2017.

[8] M. Breughe, S. Eyerman, and L. Eeckhout, “A mechanistic performance
model for superscalar in-order processors,” in 2012 IEEE International
Symposium on Performance Analysis of Systems Software, April 2012,
pp. 14–24.

[9] S. Eyerman, L. Eeckhout, T. Karkhanis, and J. E. Smith, “A mechanistic
performance model for superscalar out-of-order processors,” ACM Trans.
Comput. Syst., vol. 27, no. 2, pp. 3:1–3:37, May 2009. [Online].
Available: http://doi.acm.org/10.1145/1534909.1534910

[10] B. Agrawal and T. Sherwood, “Modeling tcam power for next gen-
eration network devices,” in 2006 IEEE International Symposium on
Performance Analysis of Systems and Software, March 2006, pp. 120–
129.

[11] M. S. B. Altaf and D. A. Wood, “Logca: A high-level performance
model for hardware accelerators,” in Proceedings of the 44th Annual
International Symposium on Computer Architecture, ser. ISCA ’17.
New York, NY, USA: ACM, 2017, pp. 375–388. [Online]. Available:
http://doi.acm.org/10.1145/3079856.3080216

[12] J. Clow, G. Tzimpragos, D. Dangwal, S. Guo, J. McMahan, and
T. Sherwood, “A pythonic approach for rapid hardware prototyping
and instrumentation,” in 2017 27th International Conference on Field
Programmable Logic and Applications (FPL), Sept 2017, pp. 1–7.

[13] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong,
“Optimizing fpga-based accelerator design for deep convolutional
neural networks,” in Proceedings of the 2015 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays, ser. FPGA ’15. New
York, NY, USA: ACM, 2015, pp. 161–170. [Online]. Available:
http://doi.acm.org/10.1145/2684746.2689060

[14] A. B. Kahng, B. Li, L. S. Peh, and K. Samadi, “Orion 2.0: A fast
and accurate noc power and area model for early-stage design space
exploration,” in 2009 Design, Automation Test in Europe Conference
Exhibition, April 2009, pp. 423–428.

[15] Xilinx, “7 series product tables and product selec-
tion guide,” February 2018, online. [Online]. Avail-
able: https://www.xilinx.com/support/documentation/selection-guides/7-
series-product-selection-guide.pdf

[16] W. Cui and T. Sherwood, “Estimating and understanding architectural
risk,” in Proceedings of the 50th Annual IEEE/ACM International
Symposium on Microarchitecture, ser. MICRO-50 ’17, 2017.

[17] M. D. Hill and M. R. Marty, “Amdahl’s law in the multicore era,”
Computer, vol. 41, no. 7, pp. 33–38, Jul. 2008. [Online]. Available:
http://dx.doi.org/10.1109/MC.2008.209

[18] Z. Guz, E. Bolotin, I. Keidar, A. Kolodny, A. Mendelson, and U. C.
Weiser, “Many-core vs. many-thread machines: Stay away from the
valley,” IEEE Computer Architecture Letters, vol. 8, no. 1, pp. 25–28,
Jan 2009.

[19] S. Borkar, “The exascale challenge,” in Proceedings of 2010 Interna-
tional Symposium on VLSI Design, Automation and Test, April 2010,
pp. 2–3.

[20] T. Antoniu, P. A. Steckler, S. Krishnamurthi, E. Neuwirth, and
M. Felleisen, “Validating the unit correctness of spreadsheet
programs,” in Proceedings of the 26th International Conference
on Software Engineering, ser. ICSE ’04. Washington, DC, USA:
IEEE Computer Society, 2004, pp. 439–448. [Online]. Available:
http://dl.acm.org/citation.cfm?id=998675.999448

[21] S. G. Powell, K. R. Baker, and B. Lawson, “A critical review
of the literature on spreadsheet errors,” Decis. Support Syst.,
vol. 46, no. 1, pp. 128–138, Dec. 2008. [Online]. Available:
http://dx.doi.org/10.1016/j.dss.2008.06.001

[22] S. R. Sarangi, B. Greskamp, R. Teodorescu, J. Nakano, A. Tiwari,
and J. Torrellas, “Varius: A model of process variation and resulting
timing errors for microarchitects,” IEEE Transactions on Semiconductor
Manufacturing, vol. 21, no. 1, pp. 3–13, Feb 2008.

[23] X. Liang and D. Brooks, “Mitigating the impact of process variations
on processor register files and execution units,” in 2006 39th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO’06),
Dec 2006, pp. 504–514.

[24] A. Rahimi, L. Benini, and R. K. Gupta, “Variability mitigation in
nanometer cmos integrated systems: A survey of techniques from circuits
to software,” Proceedings of the IEEE, vol. 104, no. 7, pp. 1410–1448,
July 2016.

[25] SymPy Development Team, SymPy: Python library for symbolic
mathematics, 2016. [Online]. Available: http://www.sympy.org

[26] W. R. Inc., “Mathematica, Version 11.2,” champaign, IL, 2017.

[27] G. M. Amdahl, “Validity of the single processor approach to achieving
large scale computing capabilities,” in Proceedings of the April 18-20,
1967, Spring Joint Computer Conference, ser. AFIPS ’67 (Spring).
New York, NY, USA: ACM, 1967, pp. 483–485. [Online]. Available:
http://doi.acm.org/10.1145/1465482.1465560

[28] X.-H. Sun and Y. Chen, “Reevaluating amdahl’s law in the multicore
era,” J. Parallel Distrib. Comput., vol. 70, no. 2, pp. 183–188, Feb.
2010. [Online]. Available: http://dx.doi.org/10.1016/j.jpdc.2009.05.002

[29] L. Yavits, A. Morad, and R. Ginosar, “The effect of communication
and synchronization on amdahl’s law in multicore systems,” Parallel
Computing, vol. 40, no. 1, pp. 1 – 16, 2014. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0167819113001324

[30] S. Eyerman and L. Eeckhout, “Modeling critical sections in amdahl’s
law and its implications for multicore design,” in Proceedings of the
37th Annual International Symposium on Computer Architecture, ser.
ISCA ’10. New York, NY, USA: ACM, 2010, pp. 362–370. [Online].
Available: http://doi.acm.org/10.1145/1815961.1816011

[31] D. H. Woo, D. H. Woo, D. H. Woo, D. H. Woo, H. H. S. Lee, H. H. S.
Lee, H. H. S. Lee, and H. H. S. Lee, “Extending amdahl’s law for
energy-efficient computing in the many-core era,” Computer, vol. 41,
no. 12, pp. 24–31, Dec 2008.

[32] E. S. Chung, P. A. Milder, J. C. Hoe, and K. Mai, “Single-chip
heterogeneous computing: Does the future include custom logic, fpgas,
and gpgpus?” in Proceedings of the 2010 43rd Annual IEEE/ACM
International Symposium on Microarchitecture, ser. MICRO ’43.
Washington, DC, USA: IEEE Computer Society, 2010, pp. 225–236.
[Online]. Available: http://dx.doi.org/10.1109/MICRO.2010.36

[33] W. J. Song, S. Mukhopadhyay, and S. Yalamanchili, “Amdahls law
for lifetime reliability scaling in heterogeneous multicore processors,”
in The 2016 International Symposium on High-Performance Computer
Architecture (HPCA-22), March 2016.

[34] S. Hong and H. Kim, “An analytical model for a gpu architecture with
memory-level and thread-level parallelism awareness,” in Proceedings
of the 36th Annual International Symposium on Computer Architecture,
ser. ISCA ’09. New York, NY, USA: ACM, 2009, pp. 152–163.
[Online]. Available: http://doi.acm.org/10.1145/1555754.1555775

[35] ——, “An integrated gpu power and performance model,” in
Proceedings of the 37th Annual International Symposium on Computer

164

Architecture, ser. ISCA ’10. New York, NY, USA: ACM, 2010, pp. 280–
289. [Online]. Available: http://doi.acm.org/10.1145/1815961.1815998

[36] S. Song, C. Su, B. Rountree, and K. W. Cameron, “A simplified
and accurate model of power-performance efficiency on emergent gpu
architectures,” in 2013 IEEE 27th International Symposium on Parallel
and Distributed Processing, May 2013, pp. 673–686.

[37] T. S. Karkhanis and J. E. Smith, “A first-order superscalar processor
model,” in Proceedings of the 31st Annual International Symposium
on Computer Architecture, ser. ISCA ’04. Washington, DC, USA:
IEEE Computer Society, 2004, pp. 338–. [Online]. Available:
http://dl.acm.org/citation.cfm?id=998680.1006729

[38] X. E. Chen and T. M. Aamodt, “Hybrid analytical modeling of pending
cache hits, data prefetching, and mshrs,” in 2008 41st IEEE/ACM
International Symposium on Microarchitecture, Nov 2008, pp. 59–70.

[39] S. Eyerman, K. Hoste, and L. Eeckhout, “Mechanistic-empirical proces-
sor performance modeling for constructing cpi stacks on real hardware,”
in (IEEE ISPASS) IEEE International Symposium on Performance Anal-
ysis of Systems and Software, April 2011, pp. 216–226.

[40] D. Brooks, V. Tiwari, and M. Martonosi, “Wattch: a framework for
architectural-level power analysis and optimizations,” in Proceedings of
27th International Symposium on Computer Architecture (IEEE Cat.
No.RS00201), June 2000, pp. 83–94.

[41] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen,
and N. P. Jouppi, “Mcpat: An integrated power, area, and timing
modeling framework for multicore and manycore architectures,” in 2009
42nd Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO), Dec 2009, pp. 469–480.

[42] A. A. Nair, S. Eyerman, J. Chen, L. K. John, and L. Eeckhout,
“Mechanistic modeling of architectural vulnerability factor,” ACM
Trans. Comput. Syst., vol. 32, no. 4, pp. 11:1–11:32, Jan. 2015.
[Online]. Available: http://doi.acm.org/10.1145/2669364

[43] A. Hartstein and T. R. Puzak, “The optimum pipeline depth for
a microprocessor,” in Proceedings of the 29th Annual International
Symposium on Computer Architecture, ser. ISCA ’02. Washington,
DC, USA: IEEE Computer Society, 2002, pp. 7–13. [Online]. Available:
http://dl.acm.org/citation.cfm?id=545215.545217

[44] B. C. Lee and D. M. Brooks, “Accurate and efficient regression
modeling for microarchitectural performance and power prediction,”
in Proceedings of the 12th International Conference on Architectural
Support for Programming Languages and Operating Systems, ser.
ASPLOS XII. New York, NY, USA: ACM, 2006, pp. 185–194.
[Online]. Available: http://doi.acm.org/10.1145/1168857.1168881

[45] B. Lee and D. Brooks, “Statistically rigorous regression modeling for
the microprocessor design space,” in ISCA-33: Workshop on Modeling,
Benchmarking, and Simulation, 2006.

[46] E. Ïpek, S. A. McKee, R. Caruana, B. R. de Supinski, and M. Schulz,
“Efficiently exploring architectural design spaces via predictive
modeling,” in Proceedings of the 12th International Conference
on Architectural Support for Programming Languages and Operating
Systems, ser. ASPLOS XII. New York, NY, USA: ACM, 2006, pp. 195–
206. [Online]. Available: http://doi.acm.org/10.1145/1168857.1168882

[47] C. Dubach, T. Jones, and M. O’Boyle, “Microarchitectural
design space exploration using an architecture-centric approach,”
in Proceedings of the 40th Annual IEEE/ACM International Symposium
on Microarchitecture, ser. MICRO 40. Washington, DC, USA:
IEEE Computer Society, 2007, pp. 262–271. [Online]. Available:
http://dx.doi.org/10.1109/MICRO.2007.26

[48] B. C. Lee, D. M. Brooks, B. R. de Supinski, M. Schulz,
K. Singh, and S. A. McKee, “Methods of inference and
learning for performance modeling of parallel applications,” in
Proceedings of the 12th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, ser. PPoPP ’07. New
York, NY, USA: ACM, 2007, pp. 249–258. [Online]. Available:
http://doi.acm.org/10.1145/1229428.1229479

[49] B. C. Lee and D. M. Brooks, “Illustrative design space studies with
microarchitectural regression models,” in 2007 IEEE 13th International
Symposium on High Performance Computer Architecture, Feb 2007, pp.
340–351.

[50] B. C. Lee, J. Collins, H. Wang, and D. Brooks, “Cpr: Composable
performance regression for scalable multiprocessor models,” in
Proceedings of the 41st Annual IEEE/ACM International Symposium
on Microarchitecture, ser. MICRO 41. Washington, DC, USA:
IEEE Computer Society, 2008, pp. 270–281. [Online]. Available:
https://doi.org/10.1109/MICRO.2008.4771797

[51] O. Azizi, A. Mahesri, B. C. Lee, S. J. Patel, and M. Horowitz,
“Energy-performance tradeoffs in processor architecture and circuit
design: A marginal cost analysis,” in Proceedings of the 37th Annual
International Symposium on Computer Architecture, ser. ISCA ’10.
New York, NY, USA: ACM, 2010, pp. 26–36. [Online]. Available:
http://doi.acm.org/10.1145/1815961.1815967

[52] H. Elmqvist, S. Mattsson, H. Elmqvist, and D. Ab, “An introduction
to the physical modeling language modelica,” in Proc. 9th European
Simulation Sympossium ESS97, SCS Int, 1997, pp. 110–114.

[53] K. L. Spafford and J. S. Vetter, “Aspen: A domain specific language
for performance modeling,” in Proceedings of the International
Conference on High Performance Computing, Networking, Storage
and Analysis, ser. SC ’12. Los Alamitos, CA, USA: IEEE
Computer Society Press, 2012, pp. 84:1–84:11. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2388996.2389110

[54] N. R. Tallent and A. Hoisie, “Palm: Easing the burden of
analytical performance modeling,” in Proceedings of the 28th ACM
International Conference on Supercomputing, ser. ICS ’14. New
York, NY, USA: ACM, 2014, pp. 221–230. [Online]. Available:
http://doi.acm.org/10.1145/2597652.2597683

[55] M. Vachharajani, N. Vachharajani, D. A. Penry, J. A. Blome, S. Malik,
and D. I. August, “The liberty simulation environment: A deliberate
approach to high-level system modeling,” ACM Trans. Comput.
Syst., vol. 24, no. 3, pp. 211–249, Aug. 2006. [Online]. Available:
http://doi.acm.org/10.1145/1151690.1151691

[56] D. Unat, C. Chan, W. Zhang, S. Williams, J. Bachan, J. Bell, and
J. Shalf, “Exasat: An exascale co-design tool for performance modeling,”
Int. J. High Perform. Comput. Appl., vol. 29, no. 2, pp. 209–232, May
2015. [Online]. Available: http://dx.doi.org/10.1177/1094342014568690

[57] S. R. Alam and J. S. Vetter, “A framework to develop
symbolic performance models of parallel applications,” in
Proceedings of the 20th International Conference on Parallel
and Distributed Processing, ser. IPDPS’06. Washington, DC, USA:
IEEE Computer Society, 2006, pp. 320–320. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1898699.1898852

[58] ——, “Hierarchical model validation of symbolic performance models
of scientific kernels,” in European Conference on Parallel Processing.
Springer, 2006, pp. 65–77.

[59] K. H. Temme, “Charm: a synthesis tool for high-level chip-architecture
planning,” in 1989 Proceedings of the IEEE Custom Integrated Circuits
Conference, May 1989, pp. 4.2/1–4.2/4.

[60] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud, “The synchronous
data flow programming language lustre,” Proceedings of the IEEE,
vol. 79, no. 9, pp. 1305–1320, Sep 1991.

[61] L. Mandel and M. Pouzet, “Reactiveml: A reactive extension to ml,”
in Proceedings of the 7th ACM SIGPLAN International Conference on
Principles and Practice of Declarative Programming, ser. PPDP ’05.
New York, NY, USA: ACM, 2005, pp. 82–93. [Online]. Available:
http://doi.acm.org/10.1145/1069774.1069782

[62] M. A. Hammer, U. A. Acar, and Y. Chen, “Ceal: A c-based language for
self-adjusting computation,” in Proceedings of the 30th ACM SIGPLAN
Conference on Programming Language Design and Implementation,
ser. PLDI ’09. New York, NY, USA: ACM, 2009, pp. 25–37. [Online].
Available: http://doi.acm.org/10.1145/1542476.1542480

[63] T. Szabó, S. Erdweg, and M. Voelter, “Inca: A dsl for the definition of
incremental program analyses,” in Proceedings of the 31st IEEE/ACM
International Conference on Automated Software Engineering, ser. ASE
2016. New York, NY, USA: ACM, 2016, pp. 320–331. [Online].
Available: http://doi.acm.org/10.1145/2970276.2970298

[64] P. LeGuernic, T. Gautier, M. L. Borgne, and C. L. Maire, “Programming
real-time applications with signal,” Proceedings of the IEEE, vol. 79,
no. 9, pp. 1321–1336, Sep 1991.

[65] M. Courbariaux, Y. Bengio, and J.-P. David, “Binaryconnect: Training
deep neural networks with binary weights during propagations,” in
Advances in Neural Information Processing Systems, 2015, pp. 3123–
3131.

[66] J. Alwen and J. Blocki, “Efficiently computing data-independent
memory-hard functions,” in Annual Cryptology Conference. Springer,
2016, pp. 241–271.

165

